About the Cover

Graphite oxide (GO) single layers can float on the air-water interface just like water lilies. Monolayers of flat GO sheets are thus obtained by the Langmuir-Blodgett technique with continuously tunable density as shown in the four SEM images. See Huang and co-workers, p 1043.
Abstract: Single-layer graphite oxide can be viewed as an unconventional type of soft material and has recently been recognized as a promising material for composite and electronics applications. It is of both scientific curiosity and technical importance to know how these atomically thin sheets assemble. There are two fundamental geometries of interacting single layers: edge-to-edge and face-to-face. Such interactions were studied at the air–water interface by Langmuir–Blodgett assembly. Stable monolayers of graphite oxide single layers were obtained without the need for any surfactant or stabilizing agent, due to the strong electrostatic repulsion between the 2D confined layers. Such repulsion also prevented the single layers from overlapping during compression, leading to excellent reversibility of the monolayers. In contrast to molecular and hard colloidal particle monolayers, the single layers tend to fold and wrinkle at edges to resist collapsing into multilayers. The monolayers can be transferred to a substrate, readily creating a large area of flat graphite oxide single layers. The density of such films can be continuously tuned from dilute, close-packed to overpacked monolayers of interlocking single layers. For size-mismatched single layers, face-to-face interaction caused irreversible stacking, leading to double layers. The graphite oxide monolayers can be chemically reduced to graphene for electronic applications such as transparent conducting thin films.

Introduction

Graphite oxide (GO) is usually made by reacting graphite powder with strong oxidants such as a mixture of concentrated sulfuric acid and potassium permanganate. After oxidation, the carbon sheets are exfoliated and derivatized by carboxylic acid at the edges, or phenol hydroxyl and epoxide groups mainly at the basal plane. The reaction breaks the π–π conjugation at those sites, which can be partially recovered by either chemical or thermal methods to yield graphene. Recently, GO has rapidly become a promising material for polymer composite and graphene-related electronics applications. A graphite oxide single layer (GOSL) consists of a hexagonal network of covalently linked carbon atoms with oxygen-containing functional groups attached to various sites (Figure 1a,b). It can be viewed as an unconventional type of soft material in that it is a two-dimensional (2D) membrane-like single polymer molecule that also acts like a colloid. The colloidal “particle” is characterized by two abruptly different length scales, with the thickness determined by a single atomic layer and the lateral sheet extending up to tens of micrometers. This gives GOSLs a very high aspect ratio and nominal surface area since a single layer is essentially completely flat. It is of both scientific curiosity and technical importance to know how these atomically thin sheets assemble and how they behave when interacting with each other.

The interaction between colloidal particles determines their colloidal stability. The three classical types of DLVO stability of charged colloidal particles are illustrated in Figure 1f by total energy (U) versus particle separation (d) curves. A colloidal dispersion is stable if the electrostatic repulsion dominates. Its potential energy curve has a high energy barrier against flocculation or coagulation (dashed red line). If van der Waals...
The colloidal stability of GOSLs should also depend on their interacting geometry. When two flat sheets are brought together in an edge-to-edge manner (Figure 1c), their van der Waals potential should scale in a way between those of two interacting geometries between GOSLs: edge-to-edge and face-to-face (Figure 1c–e). Note that the scaling law of van der Waals potential now scales with \(1/d^6\) depends on the geometry of the interacting bodies.\(^{17}\)

\[
\begin{array}{ccc}
\text{two points} & \text{two parallel chains} & \text{two parallel planes} \\
W \sim 1/d^6 & W \sim 1/d^6 & W \sim 1/d^2
\end{array}
\]

Therefore, the colloidal stability of GOSLs should also depend on their interacting geometry. When two flat sheets are brought together in an edge-to-edge manner (Figure 1c), their van der Waals potential should scale in a way between those of two atoms (\(1/d^6\)) and two chains (\(1/d^2\)), which rapidly decays as the separation increases. Therefore, the electrostatic repulsion should dominate, leading to a potential energy curve without minimum, similar to the dashed red line in Figure 1f. This suggests that GOSLs would form a stable colloidal dispersion against flocculation or coagulation if they are confined in 2D space. If the sheets are brought together in a face-to-face manner, their van der Waals potential now scales with (\(1/d^2\)). In addition, the residual \(\pi\)-conjugated domains in the sheets can contribute to the attraction, too. It should then be possible to see a shallow energy minimum before the repelling barrier on the curve, similar to the solid blue line in Figure 1f. This would lead to reversible stacking when GOSLs are forced to overlay with other. It is indeed in agreement with the observation that GO colloidal solutions usually form flocculation during storage, which can be redispersed by shaking or gentle sonication (Supporting Information, Figure S1). The face-to-face interaction should also depend on the relative sizes of the sheets. When two GOSLs with very different sizes meet this way, the separation between the charges, which are mostly on the edges, is no longer represented by the physical separation of the layers. Therefore, the repulsive potential has a finite minimum value due to the size mismatch, while the attractive potential can still scale continuously as the face-to-face separation decreases. This would lead to a potential energy curve without a repelling barrier (Figure 1f, dotted green line). The colloidal system would be unstable; therefore, two such GOSLs should tend to stack nearly concentrically to form a double layer.

The 2D water surface serves as an ideal platform to investigate the above-mentioned interactions of GOSLs. First, the interface is geometrically similar to GOSL, making it ideal to accommodate the flat sheets. Second, the soft, fluidic “substrate” should allow free movement of GO sheets upon manipulation, which should facilitate interactions between the flat GO sheets in both edge-to-edge and face-to-face geometries. Here we report Langmuir–Blodgett (LB) assembly of GOSLs. We discovered that GOSLs can float on a water surface without the need for surfactants or stabilizing agents. The GOSL monolayers exhibit remarkable reversibility against isothermal compression–expansion cycles. In contrast to molecular and

Figure 1. (a) Structural model and (b) 3D view of a GOSL showing carboxylic acid groups at the edge, and phenol hydroxyl and epoxide groups mainly at the basal plane. \(^{3,5}\) There are two fundamental interacting geometries when two single layers meet: edge-to-edge (c) and face-to-face (d,e). The sheets are negatively charged on their edges due to ionized carboxylic acid groups. The competition between electrostatic repulsion and van der Waals attraction determines the colloidal stability of such interacting systems. Edge-to-edge interaction (c) should be stable against flocculation or coagulation due to strong repulsion and weak attraction. With increased van der Waals attraction, face-to-face interaction may lead to reversible flocculation of (d) GOSLs of comparable sizes, or irreversible coagulation of (e) GOSLs of very different sizes. These scenarios correspond to the three classical types of DLVO colloidal stability, for which schematic total potential energy versus separation profiles are shown in (f).\(^{15–17}\) dashed red line, strongly repelling colloids; solid blue line, kinetically stable colloids forming reversible flocculation; dotted green line, unstable colloid forming coagulation.
hard colloidal particle monolayers, GOSLs tend to fold and wrinkle to resist collapsing into multilayers. We successfully made monolayers of flat GOSLs over large areas with continuously tunable density, which can be chemically converted to graphene for electronic applications such as transparent conductor films.8,11,18

Molecular monolayers floating at the air–water interface have been a subject of extensive interest since the 18th century.19 In a typical process for preparing LB monolayers, amphiphilic molecules are first dissolved in a volatile organic solvent and then spread onto the water surface. As the solvent evaporates, the molecules are trapped on the water surface, forming a monolayer. A moving barrier is then used to change the area of the monolayer, thus effectively tuning the intermolecular distance. As the film is compressed, it can undergo phase transitions from gas to liquid to solid phases before collapsing into a multilayer. The film can be transferred to a solid substrate (e.g., by dip-coating), forming a monolayer coating over a large area. The LB technique is not limited by small molecules; monolayers of polymers20,21 and nanomaterials22–24 have been prepared in similar manner. Single-layer graphite oxide itself can be viewed as a cross-linked molecular monolayer.25 If these monolayers are placed on a water surface, they can be collectively manipulated by the moving barrier. The GO sheets can then be pushed together edge-to-edge by compression. Face-to-face interaction may be induced in situ by overcompression, forcing GOSLs to slide on top of each other, or ex situ through sequential, layer-by-layer dip-coating. These types of interactions are important for understanding the properties of GO thin films, as they affect surface roughness, porosity, packing density, etc. On the other hand, for the practical use of GO for graphene-based electronics, it is critical to make large-area, flat, single-layer GO films. LB would be an ideal approach to achieve this.

Experimental Section

Graphite Oxide (GO) Synthesis and Purification. GO was prepared using a modification of Hummers and Offeman’s method from graphite powders (Bay carbon, SP-1).1,7,11,27 In a typical reaction, 0.5 g of graphite, 0.5 g of NaNO3, and 23 mL of H2SO4 were stirred together in an ice bath. Next, 3 g of KMnO4 was slowly added. All chemicals were purchased from Sigma-Aldrich and were used as received. Once mixed, the solution is transferred to a 35 ± 5 °C water bath and stirred for about 1 h, forming a thick paste. Next, 40 mL of water was added, and the solution was stirred for 30 min while the temperature was raised to 90 ± 5 °C. Finally, 100 mL of water was added, followed by the slow addition of 3 mL of H2O2 (30%), turning the color of the solution from dark brown to yellow. The warm solution was then filtered and washed with 100 mL of water. The filter cake was then dispersed in water (24) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P.; Nanelet, 5 times) from the precipitates. The supernatant contained well-dispersed GO sheets with sizes in the range of 5–20 μm. For LB, the trough (Nima Technology, model 116) was carefully cleaned with chloroform and then filled with DI water. GO solution was slowly spread onto the water surface dropwise using a glass syringe. Generally, the solution was spread with speed of 100 μL/min up to a total of 8–12 mL. Surface pressure was monitored using a tensiometer attached to a Wilhelmy plate. A GO film with faint brown color could be observed at the end of the compression. The film was compressed by barriers at a speed of 20 cm/min. The dimensions of the trough are 10 cm × 25 cm. Typical initial and final surface areas were around 240 and 40 cm2, respectively.

The GO monolayer was transferred to substrates at various points during the compression by vertically dipping the substrate into the trough and slowly pulling it up (2 mm/min). As with the LB deposition of other materials, effective transfer occurs when the meniscus spreads on the substrate during dip-coating. We discovered that hydrophilic surfaces are necessary for effectively collecting the graphite oxide single layers from the LB film. Poor deposition was observed on hydrophobic surfaces obtained by silane treatment on silicon or glass. Therefore, only hydrophilic substrates were used in this work. Typically silicon wafers were treated with 1:1:5 = NH4OH:H2O2:DI solution for 15 min to be more wettable by water. Other substrates used include glass, quartz and mica. Double layer GO was prepared by depositing the first layer using the method described above, drying the substrate in an oven at 80 °C for 1 h, and then doing the second deposition on the substrate using the same conditions.

Characterization. Brewster angle microscopy study was carried out on a homemade setup, which was described in great detail elsewhere.28 The deposited film was characterized using scanning electron microscopy (SEM; Hitachi S-4800-II) and atomic force microscopy (AFM; Digital Instrument, MultiMode scanning probe). We have identified the proper set of conditions for reliably seeing single layers under SEM. All the SEM images were taken with low acceleration voltage (e.g., 0.8 kV) and high current (e.g., 20 nA). Under these conditions, single layers were readily visible and the contrast between single layer, double layer, and multiple layers

was apparent. AFM images recorded on the same samples confirmed the SEM observation. AFM images were taken with tapping mode at a scanning rate of 1 Hz. The apparent heights of all the GO sheets observed were around 1 nm, which is consistent with previously reported values.11,32 GOSL films collected from the overpacked region (region d in Figure 2e) on a glass slide were reduced to graphene by exposure to hydrazine vapor. The samples were placed in a sealed Petri dish with 100 \(\mu \text{L} \) of anhydrous hydrazine (98\%, Sigma-Aldrich) for 18 h at room temperature. They were then rinsed by DI water and dried in an 80 °C oven for 1 h. Four gold electrodes with dimensions of 1.5 mm \(\times \) 7.5 mm \(\times \) 40 nm and 1.5 mm separation were patterned on the slides using a thermal evaporator and a shadow mask. The \(I-V \) curves were obtained using a Keithley 2400 source meter on a homemade probe station. The transmission spectrum was measured in the areas between the electrodes using a fiber optics spectrometer (Ocean Optics, USB 2000). Spectroscopy data acquired at five different points were averaged to plot the spectrum in Figure 6a (below). Average transmittance was calculated by averaging all the data points between 400 and 800 nm on the spectrum.

Results and Discussion

The as-made GO colloidal dispersion was purified by several centrifugation and/or dialysis steps. The size of the GOSLs in thus-treated samples was polydisperse but typically larger than 5 \(\mu \text{m} \) in diameter. With minimal sonication treatment, large sheets of tens of micrometers can be obtained. In order to transfer the GO onto a water surface, a volatile spreading solvent is needed. However, common water-immiscible spreading solvents, such as chloroform or toluene, are not good for dispersing the hydrophilic GO. Prior studies showed that GO tends to collapse and adopt three-dimensional compact structures, dispersing the hydrophilic GO. In addition, prior studies showed that GO tends to collapse and adopt three-dimensional compact conformations in “poor”, less polar solvents such as acetone.29,30

Five points between 400 and 800 nm on the spectrum.

Figure 2. Langmuir–Blodgett assembly of graphite oxide single layers. (a–d) SEM images showing the collected graphite oxide monolayers on a silicon wafer at different regions of the isotherm. The packing density was continuously tuned: (a) dilute monolayer of isolated flat sheets, (b) monolayer of close-packed GO, (c) overpacked monolayer with sheets folded at interconnecting edges, and (d) over packed monolayer with folded and partially overlapped sheets interlocking with each other. (e) Isothermal surface pressure/area plot showing the corresponding regions a–d at which the monolayers were collected. Scale bars in a-d represent 20 \(\mu \text{m} \).

As the area was decreased, the surface pressure started to rise and the GO sheets were pushed closer to each other. A few turning points were observed on the isotherm plot as the barrier was closed, as shown in the isothermal surface pressure–area plot in Figure 2e. SEM images of the monolayers collected at different stages of the plot clearly show four types of GO assembly. There was an initial gas phase where the surface pressure essentially remained constant during compression (region a in Figure 2e). Monolayer collected at this stage consisted of dilute, well-isolated, individual GO sheets (Figure 2a). It is worth noting that most of the GO sheets were larger than 5 \(\mu \text{m} \) in diameter, yet all of them were flat. Prior methods for making GO thin films, such as drop-casting, spin-coating,9 spraying,10,12 or filtration,10,12 usually produced wrinkled sheets even with submicrometer sizes.

As the area was decreased, the surface pressure started to rise and the GO sheets were pushed closer to each other. A few turning points were observed on the isotherm plot as the barrier was closed, as shown in the isothermal surface pressure–area plot in Figure 2e. SEM images of the monolayers collected at different stages of the plot clearly show four types of GO assembly. There was an initial gas phase where the surface pressure essentially remained constant during compression (region a in Figure 2e). Monolayer collected at this stage consisted of dilute, well-isolated, individual GO sheets (Figure 2a). It is worth noting that most of the GO sheets were larger than 5 \(\mu \text{m} \) in diameter, yet all of them were flat. Prior methods for making GO thin films, such as drop-casting, spin-coating,9 spraying,10,12 or filtration,10,12 usually produced wrinkled sheets even with submicrometer sizes.

References

reduced surface pressure. A striking interaction between the GO sheets was revealed by the SEM images (Figure 2c). Instead of overlapping with each other, the GO sheets started to fold at the touching points along their edges. Since the single layers are soft and flexible, the increased surface pressure is thus dissipated by the folding and wrinkling of the edges, leaving the interior flat and essentially free of buckling or wrinkling. As shown in the AFM image (Figure 3b), the folds or wrinkles were usually much more than 2 nm, which would be the height for overlapped edges. They also produced a much higher contrast in the SEM images, marking the boundaries of the sheets. At this stage, the coverage of GO over the surface was much increased, yet the majority area of the monolayer was still flat. At even higher pressure, partial edge-overlapping was observed, leading to a nearly complete monolayer of interlocked GOSLs (Figure 2d). This edge-to-edge interaction mechanism continued to prevent the center of the GO sheets from wrinkling up to a point where there was no free space left in the monolayer. With the GO sheets interlocked with each other, the entire monolayer buckled like a whole piece of thin film upon further compression. Macroscopic wrinkles at millimeter scale, which can be seen by the eye, eventually led to the collapse of the monolayer.

Based on the total potential energy analysis (Figure 1c,f), LB films of GOSLs should be stable against flocculation or coagulation. The observed GOSL tiling behavior in Figure 2 is in good agreement with the hypothesis. The strong edge-to-edge repulsion resisted stacking or overlapping between layers, even when the monolayer was compressed. In addition, the 2D GO monolayers did show excellent stability, as they were essentially fully reversible after many cycles of compression—expansion (Figure 4). SEM study confirmed that the folds, wrinkles, and partial overlapping observed during compression (Figure 2c,d) completely disappeared when the film was opened (Figure 4). Since the folding and overlapping would lead to partial face-to-face interaction, the disappearance of such structures upon monolayer expansion suggests that such interaction is not stable. Figure 4a shows representative surface pressure plots of three cycles of compression/expansion without sample collection. The curves have nearly the same shape and final pressure. However, there was a small shift of the gas—liquid phase transition point toward smaller area as the cycles continued (Figure 4b). This indicates the loss of a small amount of material from the monolayer after each cycle. Close examination of the monolayer before and after cycling revealed many double-layer structures consisting of a small GO sheet (<5 μm) on top of a much larger one (Figure 4c,d). Note that the small layer tended to completely overlap with the larger underlayer. No partially overlapped double layers were observed. These small sheets were probably pushed onto the neighboring larger ones at high surface pressure. This introduced the face-to-face type of interaction as discussed in Figure 1e. Once a small GO piece was pushed onto a large one, the electrostatic repulsion between the edges of the two sheets would lock them into completely overlapped or even nearly concentric arrangement. This double-layer structure is further stabilized by van der Waals and residual π-π stacking between the faces of each sheet. The absence of double layers of similarly sized sheets and partially overlapped double layers after the surface pressure was released suggests that face-to-face interaction (Figure 1d) between similarly sized single layers should be either unfavorable or reversible. Since GO samples obtained by oxidizing graphite particles are naturally polydisperse in size, one can take advantage of this unusual stacking behavior to make double

Figure 3. AFM images showing (a) a close-packed graphite oxide monolayer and (b) two touching GO sheets with folded edges on silicon wafer. The thickness of the graphite oxide sheets was measured to be around 1 nm, as shown in the line scans. Images (a) and (b) were recorded on the same samples used for Figure 2b,c, respectively.

layers or possibly even multilayers of GO by isothermal pressure—area cycling. Double layers were also made by sequential, layer-by-layer dip-coating. The first layer, collected at close-packed density, was either aged in air overnight or baked in an oven for 1 h to enhance its adhesion to the substrate. The second layer was then deposited at various pressures. Double GO layers were successfully made. However, the second layer of GO sheets experienced repulsion from both their neighbors and those in the underlayer. As a result, the newly deposited second layer tended to be wrinkled, especially at high density (Figure 5c). The density of the second layer was also lower than that of the first layer when deposited at the same surface pressure (Figure 5b).

The electrostatic repulsion between the GOSLs leads to the above-mentioned edge-to-edge and face-to-face assembly behaviors. Both stacking and overlapping appeared to be unfavorable, which is actually beneficial for forming GOSL monolayers. It makes LB assembly a fairly robust 2D tiling technique for making high-quality monolayers. In fact, the area of the surface monolayer in our experiment was on the order of 100 cm2, which is already at the scale of a 4 in. wafer. Large areas of GO single layers can be collected at the desired surface pressure, yielding uniform coverage of different types of monolayers (Supporting Information, Figure S3). Additional density control can be achieved by varying the pulling speed during LB transfer (Supporting Information, Figure S4). The GO single layers can be reduced by known methods (hydrazine, hydrogen, or thermal annealing) to graphene7,8 The close-packed monolayers (Figure 2b) would readily produce graphene wafers for large-scale device fabrication. The overpacked monolayers (Figure 2c,d) already constitute continuous electrical pathways that can be potentially useful for transparent conductor applications.8,12,34,35

Figure 4. GOSL monolayer was highly reversible and stable against compression. (a) Isotherm plots of three sequential compression–expansion cycles. The three plots essentially overlapped with each other, except in the early stage of compression, as indicated with the dotted-line box. (b) Close-up view of the initial stage of compression, revealing a shift of the plots to the lower area direction, indicating materials loss at the air–water interface after isotherm cycles. The SEM images of the monolayers (c) before and (d) after cycling show that smaller graphite oxide sheets were pushed onto larger ones, thus effectively reducing the amount of materials at the air–water interface. It also creates double layers of graphite oxide sheets.

Figure 5. SEM images showing layer-by-layer assembly of graphite oxide double layers of similar sizes. (a) Close-packed single-layer graphite oxide monolayer as the first layer. (b) Double layers with dilute top layer. (c) Double layers with high-density top layer. The heavy degree of folding and wrinkling of the second layer in (c) suggests strong repulsion between the two layers.
As a proof of concept, we collected a GOSL monolayer at the overpacked region of the pressure–area plot (region d in Figure 2e) on a glass slide. The film was chemically reduced to graphene by exposure to hydrazine vapor. Four gold electrodes were patterned onto film for electrical measurement (Figure 6a, inset). Transmission measurement showed that the film has an average of 95.4% transmittance in the visible region of the spectrum (Figure 6a). Figure 6b is the current–voltage plot obtained by four-probe measurement. The sheet resistance was 1.9×10^7 Ω, which is comparable to previous reports on chemically reduced GO films. The resistance can be reduced further by thermal treatment.

Conclusion

We have successfully demonstrated Langmuir–Blodgett assembly of GOSLs and made the following discoveries. Water-supported monolayers of GOSLs can be made without any surfactant or stabilizing agent. The single layers formed stable dispersion against flocculation or coagulation when confined at the 2D air–water interface. The edge-to-edge repulsion between the single layers prevented them from overlapping during monolayer compression. The layers folded and wrinkled at their interacting edges at high surface pressure, leaving the interior flat. GOSL monolayers can be readily transferred to a solid substrate with density continuously tunable from dilute, close-packed to overpacked monolayers of interlocking sheets. When single layers of very different sizes are brought together face-to-face, they can irreversibly stack to form double layers. The monolayers can be readily imaged by SEM with high contrast between single and multilayers. The geometry-dependent GOSL interaction revealed here should provide insight into the thin-film processing of GO materials since the packing of GOSLs affects surface roughness, film porosity, packing density, etc. In addition, LB assembly readily creates a large-area monolayer of GOSL, which is a precursor for graphene-based electronic applications.

Acknowledgment. This work was supported by a Northwestern University new faculty startup fund. We thank Prof. K. Y. Lee for use of her Brewster angle microscopy (BAM) setup and S. Danauskas for help with BAM experiments. We thank Profs. S. T. Nguyen and Y. Huang for helpful discussions, Prof. M. C. Hersam for use of his probe station, and A. Tayi for assistance in electrode fabrication. L.J.C. gratefully acknowledges the National Science Foundation for a graduate research fellowship. We thank the NUANCE Center at Northwestern, which is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University, for use of their microscope facilities. J.H. thanks Shaoyun Huang and Jing Huang for their assistance in designing the cover art.

Supporting Information Available: Figure S1, pictures of GO colloidal solution; Figure S2, BAM images of GOSL monolayer; Figure S3, low-magnification SEM images showing GOSL monolayers corresponding to those in Figure 2; Figure S4, SEM images showing the effect of pulling speed on the GOSL monolayer density. This information is available free of charge via the Internet at http://pubs.acs.org.

JA806262M
Figure S1. GO colloidal solutions tend to form flocculation during storage as shown in (a), which can be re-dispersed by shaking or mild sonication (b).

Figure S2. Snapshots from a video recorded by in-situ Brewster angle microscopy of the GO monolayer during isothermal compression. The presence GO on air-water interface altered the polarization station of incident beam thus giving the contrast of the images. From (a) to (d), the increased surface density of GO can be clearly seen as the film was compressed. The streaks in b-d were due to the movement of GO sheets at water surface during compression.
Figure S3. Lower magnification SEM image corresponding to those in Figure 2 showing monolayers of (a) dilute GO sheets, (b) closed packed GO sheets, (c) over packed GO sheets connected with folded edges and (d) interlocked GO sheets over large areas.
Figure S4. Effect of pulling speed on the packing density of GOSLs in the collected monolayer. (a) to (c) corresponds to pulling speed of 40 mm/min, 15 mm/min and 2 mm/min. All the monolayers were collected from a low surface pressure region.